M.A. Breslin

 Logical DesignUNIVAC III

Data Interface for $I / 0$

The attached charts indicate the word formats used for communication between the memory and I/O devices. Chart I is the read information and Chart 2 is the write information. The read information in CCSC that is x indicates available only when SCR is read.
M.A. Breslin
$\mathrm{MAB} / \mathrm{ne}$
11/25/60

Rev. A $11 / 21 / 60$

Chart I

Time	CCSTb		
\therefore	3	2	1
TP4	25	27	13
5	24	26	21
6	23	22	20
7	06	12	19
8	05	11	18
0	04	10	17
1	03	9	16
2	02	8	15
3	01	7	14
	From ep Registor		

CCSCb

4	3	2	1
24^{x}	23^{x}	22^{x}	21^{x}

Chart 2

3	2	1	4	3	2	1	4	3	2	1
13	07	01								
14	08	02								
15	09	03	04	03	02	01	19	13	07	01
16	10	04	08	07	06	05	20	14	08	02
17	11	05	12	11	10	09	21	15	09	03
18	12	06	16	15	14	13	22	16	10	04
19	22	23	20	19	18	17	23	17	11	05
20	26	24	24	23	22	21	24	18	12	06
21	27	25	X	27	26	25	25	27	26	X
From Hst to Write Register			From $A R$ to write Register				Frea ge cha...i to write Register			

Univac III Instruction

| Binary Octal
 Code | Code | Description | CVRG |
| :--- | :--- | :--- | :--- |\quad| Single wcrd |
| :--- |
| time (usec) |

Bits
 (20-15)

Skip console instructions

Control Instructions

000100	04	$(M A C) \rightarrow m^{\prime}$	60	13.5
000101	05	$(T C W R) \rightarrow m^{\prime}$	05	13.5
000110	06	$m^{\prime} \rightarrow C C$	49	4.5
000111	07	$m^{\prime}+1 C C, C C+1 \rightarrow m^{\prime}$	07,68	13.5

Information Transfer Instructions

001000	10	$(A R i) \rightarrow\left(m^{\prime}\right)$	48	9.0
001001	11	$-(A R i) \rightarrow\left(m^{\prime}\right)$	11,48	9.0
001010	12	$\left(m^{\prime}\right) \rightarrow A R i$	$18,28,59$	9.0
001011	13	$-\left(m^{\prime}\right) \rightarrow A R i$	$13,18,28,59$	9.0

Logical Operations

001	100	14	Extract $\left(\mathrm{m}^{\prime}\right) \rightarrow(\mathrm{ARi})$	14,59	13.5
001	101	15	$(A R i)\left(\mathrm{m}^{\prime}\right) \rightarrow A R i$	$15,18,59$	9.0
001	110	16	$(A R i)\left(\mathrm{m}^{\prime}\right) \rightarrow A R i$	16,59	

Arithmetic Instructions

010000	20	$\left(\mathrm{m}^{\prime}\right)($ ARi $) \rightarrow$ ARi, Decimal	8,18,59	9.0
010001	21	$-\left(m^{\prime}\right)+(A R i) \rightarrow$ ARi, Decimal	8,18,29	9.0
010010	22	$\left(m^{\prime}\right)+(A R i) \rightarrow A R j$		9.0
		$\left(\mathrm{m}^{\prime}\right)+(\mathrm{AR1}, \mathrm{AR2} 2) \rightarrow \mathrm{AR} 3, \mathrm{AR} 4$,	8,9,29	13.0
010011	23	$-\left(m^{\prime}\right)+(A R i) \rightarrow A R j$		9.0
		$-\left(m^{\prime}\right)+(A R 1, A R 2) \rightarrow$ AR3, AR4,	8,9,29	13.5

Binary	Octal			
Code	Code	Description	CVRG	Single wori time (usec.
010100	24	$\left(\mathrm{m}^{\prime}\right)+(A R i) \rightarrow$ ARi, Binary	8,18,38	9.0
010101	25	$-\left(\mathrm{m}^{\prime}\right)+($ ARi $) \rightarrow$ ARi, Binary	8,18,38	9.0
010110	26	$\left(\mathrm{m}^{\prime}\right)+(A R i) \rightarrow A R j$		9.0
		$\left(m^{\prime}\right)+($ AR1, AR2 $) \rightarrow$ AR3, AR4 Bin.	8,9,38	13.5
010111	27	$-\left(\mathrm{m}^{\prime}\right)+(\mathrm{ARi}) \rightarrow \mathrm{ARj}$		9.0
		$-\left(\mathrm{m}^{1}\right)+($ AR1, AR2 $) \rightarrow$ AR3, AR4, Bin.	8,9,38	13.5
011000	30	(AR1) (m9) \rightarrow AR $2, A R 3$	30	54-139.5
011001	31	$($ AR1, AR2 $) /\left(\mathrm{m}^{\prime}\right) \rightarrow$ AR1	31	76.5-162

Compare Instructions

011	100	34
011	\#Floating Point Add	
011	110	35
011	36	\#Floating Point Subtract
\#Floating Point Multiply		
	37	\#Floating Point Divide

(Hotructions

100000	40	Right Decimal Shift	40	18*
100001	41	Left Decimal Shift	41	13.5*
100010	42	Right Alphabetical Shift	42	21.5*
100011	43	Left Alphabetical Shift	43	13.5*
100100	44	Right Binary Circular Shift	44	18-27***
100101	45			
100110	46	\#Convert Floating to Fixed Dece	imal	
100111	47	\#Convert Fixed to Floating D	imal	
Index Register Instructions				
101000	50	$(\mathrm{IR})^{\prime} \rightarrow \mathrm{m}^{\prime}$	50	13.5
101001	51	$\left(\mathrm{m}^{\prime}\right) \rightarrow \mathrm{IR}^{\prime}$	51,58	13.5
101010	52	$\left(\mathrm{m}^{\prime}\right)+\left(\mathrm{IR}^{\prime}\right) \rightarrow \mathrm{IR}^{\prime}$	52,58	13.5
101011	53	IR Modifiert(IR') \rightarrow IR' (IRI): (m') 10-24;	53	18.0
101100	54	(ARi: m^{1})	8,39	9.0
101101	55	1(ARi) l : (m')	8,39,55	9.0
101110	56	(ARi:ones): (m'zeros)	8	9.0
101111	57	(ARi ones):(m'ones)	8,57	9.0

Flip-Flop Instructions

110000	60	Test FF ARi	60	9.0
110001	61	Reset FFARi	61	9.0
110010	62	Set FF ARi	62	9.0
110011	63			

Binary Code	Octal Code	Description	CVRG	Single word time (usec)
110100	64	Test FFm	64	9.0
110101	65	Reset FFm	65	9.0
110110	66	Alert Keyboard	66	9.0
110111	67			
Input-Output, Special Data Editing Instructions				
111000	70	Initiate Input-Output	70	13.5
111001	71	Expand (ARi) $\rightarrow \mathrm{m}^{\prime}$		58.8
111010	72	Compress (m') \rightarrow ARi		58.8
111011	73	Zero Suppress (m') \rightarrow ARi	73	9.0
111100	74	Translate 90 Column Card Code to machine code $\left(\mathrm{m}^{1}\right) \rightarrow$ ARI		18.0*
111101	75	Translate Machine Code to 90 Column Card Code (m^{\prime}) \rightarrow		18.0*
111110	76	\#\#Real Time Clock \rightarrow AR/4	76	
111111	77	Stop and Transfer	49,77	9.0

** Add 4.5 usec for each additional word in operand Except where marked*:

Time for 2 word shifts: 40 if shift $>6,18 ; \leq 6,31.5$
41 if shift >6, 13.5; $\leq 6,27$
42 if shift $>4,22.5$; $\leq 4,49.5$
43 if shift $>4,13.5 ; \leq 4,40.5$
*** Shift times for instr. 44 if shift $n \leq 7,18$
7.<.n $\leq 16,22.5$
$16<n \quad, 27.0$
For 90 Col. translates, add 13.5 usec for each additional word.
For recomplement, add 4.5 usec/word.
For indirect addressing, add 4.5 usec/level.
Field selection same time as indirect addressing.
\#Reserved for programmed subroutines via "Invalid" Op code interrupt. \#\# Optional
$\mathrm{M} B / \mathrm{ne}$
11/18/60

Function Table Signal List - Univac III Central Prccessor

FTS.	Polarity	Print	Description
100	+	138	Address I.R. output
101	+	138	Address MAC output
102	$+$	138	CMMB \rightarrow CMAS
103	+	138	CCR \rightarrow CMAM
104	-	143	$1111 \rightarrow$ CMAM
105	+	138	CMD \rightarrow CMES
106	+	014	Address IR input
107	+	138	Address MAC input
108	+	138	CMMB \rightarrow CM ${ }^{+}$
109	$+$	138	CMAF \rightarrow CMS
110	+	012	CCR \rightarrow CAAS
111	+	012	CRB \rightarrow CAAM
112	+	015	$\mathrm{CCR} \rightarrow$ CAAM
113	+	015	$\mathrm{CCR} \rightarrow \mathrm{CAAS}$
114	+	012	$2 \times \mathrm{CCR} \rightarrow$ CAAS
115	+	012	Decimal Correction in CAC
116	$+$	012	Check CACO
117	- \because	015	Check Zeros \rightarrow CaAS
118	-	015	Binary Zeros \rightarrow CAAM
119	+	013	CRB \rightarrow CAAS
120	+	012	$\mathrm{CACO} \rightarrow \mathrm{CR}$
121	$1+$	138	10^{-1} CMW \rightarrow CMW
122	+	009	CCR \rightarrow CRA
123	$+$	012	Clear CR_{1}
124	+	012	CR_{2}
125	$+$	012	CR_{3}
126	$+$	012	CR ${ }_{4}$
127	+	009	CMR \rightarrow CRA
128	$+$	013	Address CRA as input
129	+	013	Address CRA-1 as input
130	$+$	142	U2BCP \rightarrow CMW
131	+	142	HS2CP \rightarrow CMW
132	+	142	CMWG1 \rightarrow CMW
133	+	142	CMWG2 \rightarrow CMW
134	$+$	142	$3 \rightarrow \mathrm{CMW}$
135	+	142	$4 \rightarrow$ CMW
136	$+$	142	$5 \rightarrow$ CMW
137	+	142	$6 \rightarrow$ CMW
138	+	142	$7 \rightarrow$ CMW
139	+	142	$8 \rightarrow$ CMW
140	+	012	CMR \rightarrow CCS
141	+	012	$\mathrm{CMR} \rightarrow \mathrm{CCR}$

FTS.	Polarity	Print	Description
142	-	012	Clear CCS'
143	-	014	Clear CGR
144	-	014	Binary Zeros \rightarrow CCR
145	-	009	Binary Zeros \rightarrow CCR $25 \rightarrow 28$
146	+	014	$10-1 \mathrm{CCR} \rightarrow \mathrm{CCR}$
147	-	015	$\mathrm{CRB} \rightarrow \mathrm{CCR} \mathrm{25-28}$
148	+	142	$\mathrm{CMWG}_{\mathrm{n}}, \mathrm{U}_{2} \mathrm{BCP}, \mathrm{HS} 2 \mathrm{CP} \rightarrow \mathrm{CMW}$
149	+	142	$\mathrm{CMWG}_{n} \rightarrow$ CMW
150	$+$	009	CMR \rightarrow CCSFB
151	$+$	009	Clear CCFSB
152	-	128	Inhibit CMD - CMS
153	-	128	Inhibit CMD \rightarrow CMS.
154	-	143	$-1 \rightarrow \mathrm{CMAF}_{4}$
155			
156	+	110	CMS \rightarrow CMMONO1
157	+	110	CMS \rightarrow CMMONO2
158	+	110	03
159	$+$	110	04
160	+	110	05
161	+	110	06
162	+	110	07
163	+	110	08
164	+	110	09
165	+	110	10
166	$+$	110	11
167	+	110	12
168	+	110	13
169	+	110	14
170	+	110	15
171	+	139	Clear IR 01
172	+	139	02
173	+	139	03
174	+	139	04
175	+	139	05
176	+	139	06
177	$+$	139	07
178	$+$	139	08
179	+	139	09
180	+	139	10
181	$+$	139	11
182	+	139	12
183	$+$	139	13
184	+	139	14
185	+	139	15
186	+	010	Divide - Stage 1 FF
187	$+$	010	Divide - Stage 2 FF
188	$+$	012	CMMONO2 \rightarrow CCFSB
189	+	013	CCFB5-9 \rightarrow CCFSBO-4

FTS	Polarity	Print	Description
190	+	013	CCFSB $+1 \rightarrow$ CCFSB
191	+	013	CCFSB-1 \rightarrow CCFSB
192	+	012	CMM0102 \rightarrow CCFSB9
193	+	011	CCQ \rightarrow CR12 - 42
194	+	011	CR12-42 \rightarrow CCFSB
195	+	010	$1 \mathrm{ER}_{\mathrm{n}} 1 \rightarrow \mathrm{IER}_{\mathrm{n}}$
196	+	010	CRA11-41 \rightarrow CCQ
197		010	CCQ $\pm 1 \rightarrow$ CCQ
198	+	010	IER ${ }^{-1}$ - \rightarrow IEEN
199	+	010	Multiply FF
200	+	139	Clear SCR 1
201	$+$	139	2
202	+	139	4
203	+	139	4
204	+	110	CMS \rightarrow CMMATR 1
205	+	110	2
206	+	110	3
207	+	110	4
208	+	143	CCSC \rightarrow CMMATR 1
209	+	143	$\operatorname{CCSC} \rightarrow \quad 2$
210	+	143	$\operatorname{CCSC} \rightarrow \quad 3$
211	+	143	$\operatorname{CCSC} \rightarrow \quad 4$
212	-	141	$+2 \rightarrow$ CMA
213	+	141	$\mathrm{UA} \rightarrow$ CMA
214	+	138	-CCR \rightarrow CMAM
\$15	+	015	Reset $\mathrm{FF} \mathrm{AR}_{\mathrm{m}}$
216	+	015	Test FFFAR
217	+	015	Set FF AR
218	+	015	Reset FF AR
219	+	015	Test FF AR
220			
221			
222	+	140	CCSC \rightarrow CMMONO3
223	+	140	04
224	+	140	05
225	+	140	06
226	+	140	07
227	+	140	08
228	+	140	09
229	+	140	10
230	$+$	140	11
231	+	140	12
232	+	140	13
233	+	140	14
234	+	140	15
235	+	013	Address CRA as Output
236	+	013	Address CRA +1 as Output
237	+	013	Address CRA +2 as Output
238	+	013	Address CRA +3 as Output

FTS.	Polarity	Print	Description
239	$+$	015	Detect $=$ on IR. comp.
240	-	015	Set $=\mathrm{FF}$
241	+	015	Reset $=\mathrm{FF}$
242	+	015	Set >, < FF
243	+	015	Set >, < FF
244	+	015	CCFSB \rightarrow CNS
245	+	138	CMS \rightarrow CNS
246			
247		087	CCS \rightarrow Display
248	+	013	Address SCR from CRA
249	$+$	014.	$2-1$ CCR \rightarrow CCR
250	+	015	Set Standby Unavailable FF AR
251			
252			
253			
254			
255			
256			
257	$+$	014	$\mathrm{CCR}_{01} \rightarrow \mathrm{CCR}_{25}$
258			
259	$+$	011	Check CCQ
260	+	009	CCR \rightarrow CVR
261		015	Inhibit $\mathrm{CCR}_{01-04} \rightarrow \mathrm{CCR}_{25-28}$
262	-	011	Clear to Decimal Zeros CCFSB6-9
263	-	015	CCFSB \rightarrow CAAS
264	+	015	$-\left(\mathrm{CCR}_{25}\right) \rightarrow \mathrm{CR}$
265	+	015	$-(\mathrm{CR} 25) \rightarrow \mathrm{CMN}_{25}$
266	+	009	CRA \rightarrow CMMA
267	$+$	009	CMR \rightarrow CMMA
268	-	009	Clear CMMA
269			
270	+	014	CMAF \rightarrow CMW
271	+	014	CRB \rightarrow CMW
272	$+$	014	CCR \rightarrow Typewriter
273			
274	$+$	014	Typewriter \rightarrow CCR
275	+	014	Real Time Clock \rightarrow CCR
276			
277			
278			
279			
280			
281			
282			
283			
284			
285			
286			
287			

FTS.	Polarity	Print	Description
288			
289			
290			
291	+	013	Binary Zeros $=$ Decimal Zeros.
292			
293			
294			
295	+	010	$\mathrm{CACO} \rightarrow \mathrm{CCFSB} \rightarrow \mathrm{CR}$
296	+	011	CCFSB \rightarrow CR12-42
297	+	012	CRAK \rightarrow CMAK.
298	+	014	CMAK \rightarrow CMS.
299	-	014	Binary Zeros \rightarrow CMW 20-24

כolarity indicates the voltage level of the signal when the machine is in the General Clear condition. Minus is -3 volts, + is Ground.

Index Register Assignment

IR	Priority	MAC
01	01	CC
02	02	MAR
03	03	U III A
04	04	U III B
05	05	G.P1
06	06	2
07	07	3
08	08	4
09	09	5
10	10	6
11	11	7
12	12	8
13	13	U II
14	14	UII C
15	15	U III D

MAB/ne
$11 / 16 / 60$
M.A. Breslin

Logical Design

Connector Format - INIVAC III

Univac III has 11 thirty-four (34) pin connectors for logical signals only. These are alloted as follows:

3 for the Memory
8 for the General Purpose Channels.
The format for these connectors is atuached. For logical prints refer to DX 144-153.
M.A. Breslin

$\mathrm{MAB} / \mathrm{ne}$ 11/23/60

Rev. B - 11/21/60

Thirty For Pin Connector

Pin	Title	Desoription	Polarity
01	CCSGn 1	Read Character 1	+
02	$\operatorname{ccsG}_{n} 2$	Read Character 2	+
03	CCSGn 3	Read Character 3	+
04	CCSGn4	Read Character 4	+
05	CSGGn	Memory Granted	+
06	SPAR $^{\text {e }}$		
07	CFEG_{n}	Lockout	+
08	CMEGn	Memory Error	+
09	- CTPG	Cycling Unit Start (T3)	-
10	SPARe		
11	$\mathrm{SPAR}_{\text {e }}$		
12	$\mathrm{SPAR}_{\mathrm{e}}$		
13	$\mathrm{SPAR}_{\mathrm{e}}$		
14	CMWG 1	Write A/N Character 1	+
15	CMWGn2	Write A/N Character 2	+
16	CMWGn 3	Write A/N Character 3	+
17	CMWG ${ }^{\text {4 }}$	Write A/N Character 4	+
18	-CMRGn	Memory Request	-
19	$-\mathrm{CMVG}_{n}$	Instruction	+
20	-CMMWGn	Memory Write	+
21	SPARe		
22	CFOIGR $_{n}$	Set Instruction Interlock FF	-
23	-CFO2Gn	Set Program Interrupt FF	-
24	-CFO3Gn	Set ReRead Error FF	-
25	$-\mathrm{CFO}_{4} \mathrm{G}_{\mathrm{n}}$	Set Out of Paper FF	
26	$-\mathrm{CFO5G}_{\mathrm{n}}$	Set Reissue/Fault FF	+
27	$-\mathrm{CRBG}^{\text {n }}$	80 Column Card Equipment	+
28	$-\mathrm{CLTG}_{\mathrm{n}}$	Printer, Paper Tape or Translate Instruction	+
29	-CR9Gn	90 Column Card Equipment	+
30	-CCR2OGn	20 th Call	+
31	-CCROGn	Rows 9-4	+
32	SPARE		
33	SPARE		
34	SPARE		

Polarity indicates the:
Voltage on output of cable driver when signal is desired.

		--3-	
Pin\#	Connector \#1	\#2	\#3
01	CMR01	-CMWO1C	-CMSOO
02	02	-CMWO2C	01
03	03	-CMWO30	02
04	04	-CMWO4C	03
05	05	-CMWO5C	04
06	06	-CMN06C	05
07	07	-CMW07C	06
08	08	-CMW08C	07
09	09	-CMW09C	08
10	10	-CMW10C	09
11	11	-CMW11C	10
12	12	-CMN12C	11
13	13	-CMW130	12
14	14	-CMW14C	13
15	15	-CMW15C	CMSW1
16	16	-CMN16C	R1
17	17	-CMN17C	W2
18	18	-cm18c	R2
19	19	-CMW19c	Spare
20	20	-CMW2Oc	Spare
21	21	-CMLR1 1	Spare
22	22	-CMR2C	Spare
23	23	-CMR23C	Spare
24	24	-CMR24C	Spare
25	25	-cML25 C	Spare
26	26	-cmp6c	Spare
27	27	-CMVR 7 C	Spare
28	28	Spare	Spare
29	CMAE1	Spare	Spare
30	2	Spare	Spare
31	CMAE1	Spare	Spare
32	2	Spare	Spare
33	HRR	Spare	Spare
34	SPARe	Spare	Spare

